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Quantum Construction of General Relativistic 
Spacetime 

A. R. Marlow 1 
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A construction of a model of general relativistic spacetime that arises naturally 
from within standard quantum theory is presented. In terms of this model all the 
usual structures of general relativity theory can be given a quantum-theoretic 
interpretation, so that the usual barriers between the two theories are absent. 

The most characteristic quantity distinguishing quantum theory from 
classical theory is, without doubt, the probability amplitude 

(b[a) 

the squared absolute value of which gives, in the elegantly simple formulation 
suggested by David Finkelstein, the probability that an initial input of state 
l a) will result, on measurement, in an outcome characteristic of state I b). 
The history of quantum theory has consisted in finding ever better methods 
of analyzing and computing such amplitudes. 

Dirac gave us the method of using expansions of the identity operator 
as a sum of orthogonal projections 

r -  Z I,,><',L 
n 

to give a first-stage analysis: 

(bla) = (b[lla) = ~ (bln)(nla) 
n 
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in terms of intermediate amplitudes (bin}, (nla}, etc. Then Feynman gave 
us a richer analysis by exploiting the fact that a product of identities is still 
the identity: 

i = FI/  = F I E  In }<n J = E FI In(s)}<n(s)l (1) 
S S IZ,~ n S 

where in the last expression we end up summing over quantum processes 
represented as products of intermediate state operators 

. . .  [n(s)><n(s)l'ln(s')><n(s')l' ln(s")><n(s'91.. .  

labeled by index-valued functions n of the ordering parameter s. This, of 
course, is just a quick derivation of Feynman's basic analytical insight: that 
the identity operator can be expanded as a sum over quantum processes, and, 
as we vary the potential intermediate state expansions, all possible quantum 
processes appear as candidates in the expansion. Thus we have a simple 
derivation of Feynman's analysis by quantum processes, but the processes 
all occur in the infinite-dimensional complex Hilbert space structure of pure 
quantum theory, and so far there is no hint of any 4-dimensional spacetime 
structure inherent in such processes. 

When, however, we use the expansion (1) to analyze a particular ampli- 
tude such as (bla} the situation becomes much more limited: 

(b I a} = E (bl~ln(s))(n(s)[a) (2) 
$ 

We have now a Feynman sum over amplitudes for the various intermediate 
processes, but we note that the only intermediate states In(s)} that can possibly 
make a nonzero contribution are those that are not orthogonal to either [a) 
or I b), that is, 

In(s)} = ca(s) la } + cb(s) lb) 

+ noncontributing components, Ca(S) ~ O, Cb(S) 4= 0 

TO see this we only need to note that, if either (bin(s)} = 0 or (n(s) la) = 
0, all sum-over-process expansions of these intermediate amplitudes vanish, 
and so make only a zero contribution to expression (2). Thus, in the nontrivial 
case where [b) is linearly independent of la) (the only case we will consider, 
since otherwise I(bla}l = 1 and there is nothing to analyze), we have, for 
the contributing part of In(s)}, 

[na,(s)) = (aln(s))la) + (ailn(s))lak) (3) 

where l a~-} is the unit vector orthogonal to l a) in the complex 2-dimensional 
space ~ .b  spanned by state vectors l a) and I b). Thus, the observable (i.e., 
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self-adjoint) components of any state operator I n(s))(n(s) I making a nonzero 
contribution to the Feynman analysis of the amplitude (bla)  can be 
expressed as 

[n.h(s))(n.~(s) I = I(a]n(s))12]a)(al + [ (a ' ln (s ) )12 lak) (ar  

+ (aln(s)><n(s)lar 

+ (ak ln(s ) ) (n(s ) [a) lar  a I 

or, in terms of the four obvious self-adjoint operators on 7Cab, 

0-0 = (l/2)(la){a] + lar )(akl) 

0 - I  = (1/2)(la~F,a[ + [a)(ar I) 
= (i/2)(la ><at - l 

0-3 = (1/2)( la)(al  - l a ~ - ) ( a b l )  

(the standard Pauli operators on ~.b), we have 

I nab(S)){nab(S)l = pab(S)(0-O + ~(S)) (4) 

where pab(s) = trace(0-oln(s)}(n(s) I) ~ O, and 

or(s) = sin O(s) cos r 0-1 

+ sin O(s) cos r 0-z + cos O(s) 0"3 

I(aln(s))l  2 -  [ ( o k  }n(s)}l  = 
c o s  O(s) = 

pab(S) 

(a~ I n(s)){n(s)la) + (al,,(s)><n(s)la#> 
sin O(s) cos r = 

p.b(s) 

ln(s)><n(s)la> - <aln(s)><n(s)la  >) 
sin O(s) sin +(s) = 

Pab(S) 

Miraculously, then, we find that the only quantum processes contributing to 
a Feynman sum-over-processes analysis of  the amplitude (bla)  are exactly 
those that are multiples of chains of state operators of the form 

�9 . .  [0-0 + cr(s)][o'0 + o'(s ' )][0-0 + ~r(s")] . . .  

i.e., only those processes contribute that have links or tangent vectors that 
are lightlike vectors in the 4-space 5?4b of self-adjoint operators on the space 
9~b - C 2, when 0-0 is given its standard interpretation as the timelike compo- 
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nent of the three spacelike Pauli operators 0-~, 0-2, 03. This interpretation of 
the operator space ~4 b as the Minkowski space of special relativity is, of 
course, not new-- i t  has been exploited in, among others Baylis et al. (1992) 
and Marlow (1986)--but this is the first instance, to my knowledge, where 
it has appeared as an intrinsic implication of standard quantum theory. 

Another surprising implication of the analysis above is that, without any 
explicit use of the Dirac equation for relativistic particles, we have derived 
one of its main consequences--the only potential paths in spacetime that 
connect any two states l a) and I b) are lightlike trajectories, and this is exactly 
what the Dirac equation tells us is the case even for quantum fields of nonzero 
mass. Any apparent slower-than-light motion is the result of an averaging 
over the Zitterbewegung inherent in the solutions of the Dirac equation (Dirac, 
1967, pp. 262-263), a point treated more recently by Hestenes (1990). From 
the point of view we are taking here, we can say that the potentiality of 
processes between I a) and I b) creates the vacuum spacetime relating the two 
states as the tangent space for the possible processes connecting the states. 

In this way we get a quantum operator model of special relativistic (i.e., 
fiat) spacetime. The interior of the lightcone is defined by mixed states, that 
is, averages over the pure states defining the future lightcone surface (positive 
operator cone in 5f4), while the past lightcone consists of operators with 
negative eigenvalues, and, of course, the spacelike directions are defined by 
operators with mixed positive and negative eigenvalues. 

But where would the curved spacetime of general relativity come from? 
The natural way to construct a "curved surface" from flat pieces is to use the 
pieces to put together a geodesic dome in the way pioneered by Buckminster 
Fuller--one would get smoothness then from ever smaller and smaller pieces. 
To see how this comes about from pure quantum theory, we first note that 
so far we have been concerned with the abstract possibility of analyzing 
an amplitude (bla) in terms of the Feynman sum over quantum processes 
connecting the states involved in the amplitude, but as tong as no actual 
intermediate state I c) is physically realized, we have no basis for including 
in our analysis any physical properties other than those embodied in states 
l a) and I b), and hence we discard all properties "orthogonal" to these states. 
Another way of stating this is that we work with equivalence classes of 
intermediate states, with two states being declared equivalent if they have 
the same components relative to l a) and I b), and we discard all aspects about 
which there exists no physical information, i.e., two states are equivalent if 
they project onto the same state in ~ab. Our previous work above can then 
be seen as establishing that the set of such equivalence classes has the natural 
structure of spacetime 5f4b. 

But, as Feynman pointed out, the situation changes radically if some 
particular intermediate state I c) is actually realized to the exclusion of other 
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possibilities--this occurs if some means of irreversibly recording distinguish- 
ing properties of I c) is inserted into the process; then our analysis would 
look like 

( b ] ~  (processes in 5~ lC)(Ct~ (processes in 5e4c) Ia) (5) 

where we now must deal with two 4-spaces of self-adjoint operators (i.e., 
spacetimes) 5f4c and fT4b, sharing a single common lightlike ray defined by 

I c><cl-- < c  + __ + (6) 

Experimentally preparing a definite intermediate state I c)(cl forces our analy- 
sis now to consider all lightlike paths through l a)(a I in 5fa4c that passes through 
I c)(cl and then continue on in 9~ to pass through I b)(b I, and experimentally 
fixing another intermediate state, say I d)(dl, between I c)(c I and [ b)(b I just 
serves to replace ~f4b with two new flat spacetime "pieces," b~ and 5f4b, etc., 

(hi ~r I d)(dlb%[ c)(c l~r I a) 
We note in this construction that only actually prepared (that is, recorded) 
intermediate states introduce new spacetime 4-planes that may intersect each 
other at angles other than zero, or, in other words produce "curvature." In 
between such actual recorded states, there is no additional data available to 
justify the construction of anything other than the flat operator 4-spaces as 
the proper arenas for a Feynman sum-over-process analysis, and in fact, as 
we have seen above, any components outside of these 4-spaces simply make 
a null contribution to the analysis. 

We emphasize this point in order to make clear this natural connection 
between matter and geometry in our model. Since only recorded states contrib- 
ute to any deviations from flatness, we get a conception of matter as simply 
the sum total of all quantum states that, in one way or another, have become 
permanently realized or recorded in our quantum universe, as opposed to 
those that are merely potential states. We can summarize this succinctly in 
the convenient dictum 

Matter Is Memory 

and in between the actual recorded memory of states there is only the empty 
vacuum of 4-space potentialities. Thus, in this model, macroscopically observ- 
able bulk matter would be constituted by incredibly convoluted "microscopic" 
structures of 4-space planes in the infinite-dimensional self-adjoint operator 
space of quantum theory, representing concentrations of permanent records 
of states. Presumably the macroscopic Einstein tensor and its relation to 
overall curvature in the universe would result from a properly defined macro- 
scopic averaging over these quantum 4-space structures. 
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We have so far used terms such as "geometry," "angle," "curvature," 
etc., without actually specifying precisely how they are to be given meaning, 
but we find that, once again, quantum structure comes to our rescue: the natural 
geometry provided by the trace metric on self-adjoint operators induces a 
geometry on all our 4-space substructures. Specifically, let us define, for self- 
adjoint operators a, [3, 

h(o~, [3) = 12 trace(al3) (7) 

where 12 is a scale factor (measuring the physically detectable effect that 
Hilbert space angles and lengths exert in our observable geometric universe, 
possibly of the order of the Planck length squared, ---10 -70 m 2, but, in any 
case, yet to be determined). This, of course, defines a Euclidean metric, 
which in turn defines the standard topological and differentiable structures 
of our quantum spacetime. The physically useful pseudo-Riemannian metric 
uncovered by Einstein and so successfully used in general relativity to relate 
gravitation to geometry would then be given at the microscopic quantum 
level on all our spacetime tangent 4-planes ,~o4 by 

where 

gq(V, W) ~ h (v  c, w )  (8) 

v = v~ + v, w = w~ + w, 

V = V io" i , etc. 

and the conjugation v c is the natural Clifford algebra involution defined by 
reversal of the vectors of the algebra, i.e. cry' ~ -cri, i = 1, 2, 3, so that 

v c -= v~ - v (9) 

(Baylis et al., 1992). The macroscopically smooth (differentiable) metric of 
Einstein's theory, and the smooth manifold structure itself, would follow 
from an averaging over the nonsmooth, highly "crinkly" spacetime 4-planes 
of our model above, that is, gEinstein = gq. 

One advantage of the sort of model presented here is that all of the 
standard structure of general (and special) relativity is given a precise realiza- 
tion within the standard structure of quantum observables as self-adjoint 
operators. Thus we have the best of both worlds! The smooth 4-dimensional 
manifold structure of Einstein's theory is replaced by a piecewise smooth (and 
even piecewiseflat) operator-valued manifold with tangent spaces spanned by 
the observables cr~ on complex 2-dimensional subspaces of the Hilbert space 
of standard quantum theory, smooth trajectories are replaced by piecewise 
smooth trajectories, and, with a judicious use of almost everywhere (a.e.) to 
mean "except on the boundaries," special relativity holds on each of the flat 
quantum spacetime pieces. 
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Thus we have no new interpretational problems in either quantum theory 
or general relativity. Especially noteworthy is the fact that in the Heisenberg 
picture of quantum theory, where the initial state operator P0 (=  l a)(al ,  or 
possibly a mixed state) merely represents initial conditions and all evolution 
is included in the observables, we recover both quantum-theoretic and general 
relativistic results from the standard expectation value formula 

A(s)  = Trace[A(s)p0] 

with uncertainty intrinsically included by 

AA(s) = [A--7(s) - (A(s)) 2] 

An interesting way of interpreting the quantum processes building up the 
general relativistic spacetime manifolds in the construction above may be 
found in the recent development of the consistent-histories formulation of 
quantum theory. A current account with full references has been given by 
Saunders (1993). The present author hopes in the near future to make a more 
detailed formulation of the work outlined here, together with its implications, 
but it seems worthwhile for this preliminary version to see the light of day, 
if for no other reason than so that others with possibly more insight can 
begin to make contributions. 
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